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Quadrotors are popular unmanned aerial vehicles that have a plethora of 
applications for civilian and military purposes. This is due to their superior 
agility and maneuverability which widens the span of applications. In this 
paper, a feedback linearization controller is designed to control all the states 
of the over actuated quadrotor with tilting rotors that was developed by the 
author and his colleagues. The controller is introduced in a novel approach 
that overcomes the problem of nonlinear inputs and that decouples the 
system into completely two independent subsystems while rejecting wind 
gusts. In addition, an optimization algorithm is introduced to choose among 
the possible sets of inputs based on energy consumption minimization. The 
results demonstrate that the quadrotor with tilted rotor can effectively attain 
the desired trajectory in the presence of wind disturbance. 
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1. Introduction 

*Quadrotors have been extensively used for 
various civilian and military purposes. Examples of 
such applications are surveillances, traffic 
monitoring, rescue missions, patrolling forests in 
case of fire outbreak, warfare, and other risky 
missions. Modeling for the conventional quadrotor 
exists in numerous literatures for instance in 
Bouabdallah et al. (2007), Pounds et al. (2010), and 
Voos (2009). These model structures possess 
limitations regarding the orientation coupling, 
because of insufficient inputs, hence making it 
incongruous for some particular tasks. In light of 
this, different modeling schemes have been 
employed Ryll et al. (2012) and Oner et al. (2008) in 
quadrotors with tilt wing to address some 
deficiencies of the conventional quadrotor to 
improve the actuation capacity. Additional inputs 
have only been successfully aimed at decoupling the 
quadrotor orientation either to achieve forward 
flight mode or moving sideways while hovering as 
the case may be. This is particularly useful in 
applications requiring more maneuverability. 

However, a thrust tilting approached Elfeky et al. 
(2013, 2014) and Hua et al. (2013) were applied to a 
conventional quadrotor to decouple the orientation, 
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with the aim of reducing additional input. Each rotor 
is designed in a way such that it can tilt around two 
axes with respect to fixed body frame. In this design, 
the number of inputs becomes twelve instead of four 
in the conventional quadrotors. Therefore, it is 
enough to have six inputs to fully actuate this 
modified quadrotor. Also twelve inputs may be used 
to impose arbitrary trajectories and other 
requirements such as disturbance rejection. With 
this design, each of the twelve states (outputs) (6 
positions/orientations - 6 translational/rotational 
speeds) can be controlled independently and freely. 
In addition, the novelty of this system is that, it can 
perform all the desired control objectives with half 
of its actuators faulty. Various control techniques 
have been used successfully to control conventional 
quadrotor within the range of their capabilities. In 
Bouabdallah et al. (2007), Pounds et al. (2010), and 
Ryll et al. (2012), linear control laws have been 
extensively employed. However in Voos (2009), 
Altug et al. (2005), Senkul and Altug (2014), Morel 
and Leonessa (2006), Liu et al. (2013), Li and Wang 
(2013) and Saif et al. (2012) non-linear control 
methods were also successfully employed. For the 
quadrotor with tilt-wing different control methods 
have been applied for instance, an output feedback 
control in Ryll et al. (2012), LQR control in Oner et al. 
(2008) and PID control in Salih et al. (2010) and 
Elfeky et al. (2013) to achieve different flight modes. 

In this work, we shall exploit the capability of 
quadrotor with tilted rotors to tackle the issues of 
orientation decoupling. Each rotor possesses two 
degrees of freedom, thus increasing the number of 
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input to twelve. Although, six inputs are sufficient for 
full actuation, additional inputs can be utilized for 
different flight modes and wind gust rejection. 
Linearized feedback controllers are used to control 
the quadrotor. This paper is organized as follows. 
Section 2 presents the dynamic model of quadrotor 
with two degree of freedoms tilting rotors. The wind 
gust modelling is stated in Section 3. The design of 
feedback controllers based on feedback linearization 
is given in Section 4. Section 5, discusses the 
optimization techniques that are used to select 3 
inputs out of 12 such that an objective function 
related to the power consumption is minimized. 
Simulation results that show the effectiveness of the 
designed controller are shown in Section 6. Finally, 
the paper conclusion is given in section 7. 

2. System model 

2.1. Frames and rotation matrices 

The quadrotor consist of five rigid bodies that are 
connected together and are in relative motion 
around them. These five bodies are the quadrotor 
body itself Band four propellers Pi attached to the 
body. Denote the world inertial frame by FE  ∶   {OE,
XE, YE, ZE} and FB  ∶   {OB, XB, YB, ZB} be the 
quadrotor body frame attached to its center of 
gravity. In addition, the frames of the rotors are 
taken to be parallel to each other and parallel to the 
quadrotor body frame and are given by FPi  ∶   {OPi ,

XPi , YPi , ZPi}, i = 1, … ,4. 

The orientation of each of the rotors is controlled 
by two rotations with respect to the rotor-fixed 
frame; αi, a rotation about YPi , and βi, about ZPi . This 

rotation creates another rotating frame for the 
rotors denoted by FP̅i  ∶   {OP̅i , XP̅i , YP̅i , ZP̅i}, i =

1, … ,4 as shown in Fig. 1. 
Unlike the conventional quadrotor, in this 

proposed design (Elfeky et al., 2013, 2014), when the 
rotors are aligned alongZPi , say, rotor 1 and rotor 4 

are assumed to rotate counter-clock-wise CCW, 
while rotor 2 and rotor 3 rotate clock-wise CW as 
shown in Fig. 2. Let the forward direction be 
alongXB. This design can serve for many critical 
applications. The fact that the motions are 
completely decoupled and that the quadrotor doesn’t 
need to pitch to go forward nor to roll for lateral 
motions; this fact makes our design very suitable for 
sensitive payload as it provides a very smooth ride. 
Surveillance and monitoring could be improved as 
the quadrotor can fly at precise attitudes with 
precise speeds and orientations which make it very 
suitable for military application. 

Let R
P̅i

Pi  be the rotational matrix from the rotors-

rotating frame OP̅i  to the rotors-fixed frameOPi . Since 

the rotors’ fixed framesOPi  are parallel to the body-

fixed frame OB  at the center of gravity, then 
 

R
P̅i

Pi = RP̅i
B = [

cβicαi −sβi cβisαi
sβicαi cβi sβisαi
−sβi 0 cαi

]                   (1) 

where c(. ) and s(. )denote cos(. ) and sin(. ) 
respectively. 

 

 
Fig. 1: Tilt angles of the rotor w.r.t fixed body frames 

 
A full rotation of the quadrotor body with respect 

to the inertial frame can be described by three 
consecutive rotations about the three body axes, roll 
rotation Φ about the body x-axis, pitch rotation Θ 
about the body y-axis and yaw rotation Ψabout the 
body z-axis. Then RB

E  is the body transformation 
matrix with respect to the earth inertial frame, and is 
given by 

 
RB
E = RΨ ⋅ RΘ ⋅ RΨ

= [
cΨ −sΨ 0
sΨ cΨ 0
0 0 1

] [
cΘ 0 sΘ
0 1 0
−sΘ 0 cΘ

] [
1 0 0
0 cΦ −sΦ
0 sΦ cΦ

]

= [
cΨcΘ −sΨcΦ + cΨsΘsΦ sΨsΦ + cΨsΘcΦ
sΨcΘ cΨcΦ + sΨsΘsΦ −cΨsΦ + sΨsΘcΦ
−cΘ cΘsΦ cΘcΦ

]

        (2) 

 
The relationship between the body-fixed angular 

velocity vector [p q r]T and Euler-Angles rates 
[Φ̇ Θ̇ Ψ̇]

T is given by 
 

[
p
q
r
] = [

1 0 −cΘ
0 cΦ sΦcΘ
0 −sΦ cΦcΘ

] [
Φ̇
Θ̇
Ψ̇

]                   (3) 

2.2. Quadrotor dynamics 

Let ωi be the rotational speed of the rotor i. Then 
the lifting thrust is given as bω2i and the drag 
moment is given as dω2i, where b and d are the 
thrust and drag moment constants respectively. 
Therefore, the thrust components (force) of the ith 

rotor at the body C.G. are then given by 
 

Fi = [

cβicαi −sβi cβisαi
sβicαi cβi sβisαi
−sβi 0 cαi

] [

0
0
bωi

2
]                   (4) 

 

The moments of a titled rotor consist of the drag 
moment and the moments generated by the thrust 
components. These two components are expressed 
as 
 

Mi = [

cβicαi −sβi cβisαi
sβicαi cβi sβisαi
−sβi 0 cαi

] [

0
0
bωi

2δ(i)
] + ri × Fi               (5) 

 

where δ(i) = [1,1,−1,−1] and ri is the vector from 
center of gravity to the reference point of the rotors, 
i.e. r1 = [l, 0, −h], r2 = [0, l, −h], r3 = [−l, 0, −h],
r4 = [0,−l,−h] where h and l are the vertical and 



Abdul-Wahid A. Saif/International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 150-159 

152 
 

horizontal displacements from the center of gravity 
to the rotors respectively. Denote by η the quadrotor 
position vector and by Ω the body angular velocities 
vector which are given byη = [x    y    z]Tand Ω =
[p    q    r]T.Then the summation of forces acting on 
the quadrotor body are given by the dynamic 
equation: 
 
mη̈ = mgz − Kη̇ + RB

E ∑ Fi
4
i=1 + D                   (6) 

 

where m is the mass of the quadrotor, gz = [0 0 g]T 

and K is the matrix of drag constants, and is given by 
K = diag{K1 K2 K3}and D = [d1 d2 d3]

T is the 
disturbances components of wind gust that will be 
discussed later. The rotation dynamic equation is 
then given by: 
 

IΩ
⋅

= −(Ω × IΩ) − MG −Mf +∑ Mi
4
i=1 +Md                  (7) 

 

where I is the inertia matrix of the quadrotor, and is 
given by I = diag{Ix Iy Iz}. 

MG is the gyroscopic forces, and is given by 
 
MG = ∑ IR(Ω × ω̅i)

4
i=1 δ(i)                    (8) 

 

IR is the rotor moment of inertia and 
 

ω̅i = [

cβicαi −sβi cβisαi
sβicαi cβi sβisαi
−sβi 0 cαi

] [
0
0
ωi

]  

 (9) 

Md represents a random disturbance moment, Mf 
is the drag/friction moments with K4, K5 and K6 
representing the drag coefficients (Habib et al., 
2011) and is given by: 

 
Mf = [K4p K5q K6r]T  

 
and 

 
Md = [mdp mdq mdr]T. 
 

Finally, the equations of motion are 
 

[
η̈

Ω̇
] =

[
gz −

K

m
η̇ +

RB
E

m
∑ Fi + D
4
i=1

−(I−1Ω × Ω) − I−1MG − I
−1Mf + I

−1∑ Mi + I
−1Md

4
i=1

] 

                 (10) 
 

where Fi and Mi  are given by Eqs. 4 and 5 
respectively. 

 
Fig. 2: Quadrotor with each rotor tilting about two axes 

3. Wind gust modeling 

The modeling approach used in this work is 
based on Solovyev et al. (2015). This approach takes 
the following into consideration: 
 
 The effect of wind velocity change (increasing or 

decreasing). 
 Gust duration.  
 Wind velocity change with respect to altitude.  
 Wind direction change. 

 
The wind force expression, depending on the 

effective influence area on the quadrotor, is also 
derived. However, this model is suitable, based on 
the finding in Habib et al. (2011), where the effect of 
wind gust in small quadrotors is significantly 
correlated to the rate of increase or duration of a 
gust rather than the magnitude of the gust.  

At any point in time the effect of wind felt at the 
different elements of the body is assumed to have 
equal magnitude and direction. The wind model 
velocity V takes the form:  

 

|V| =  

{
  
 

  
 

Voi,                        t ≤ t0i

V0i + 
|Vmi − V0i|

2
(1 − cos(

π(t − t0i)

dni − t0i
)) , t0i < t ≤ dni, Vmi ≥ V0i    

V0i + 
|Vmi − V0i|

2
(cos (

π(t − t0i)

dni − t0i
) − 1) , t0i < t ≤ dni, Vmi < V0i

Vmi,                        t ≤ tm

 

 

where, 
tm; represents the maximum flight time. 
n; represents a discrete random variable to 
determine the number of wind steps for tm. 
Voi; represents the wind velocity before each step. 

toi; represents a discrete random variable to 
determine each wind step start. 
dni; represents a discrete random variable to 
determine each duration of gust. 
Vm; represents each gust magnitude. 
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Simulation example of the model given in Li and 
Wang (2013) for t0 = [0; 9; 16; 19]s, Vm =
 [1; 4.5; 0; 1]m/s, dn = [7; 5; 2; 5]s, tm =  25s and 
V0 =  0.5m/s  is shown in Fig. 3. However the 
following limitations apply when generating random 
values: 
 

n ∈ [0,
tm

10
, ] ;  di ∈ [0, ti+1 − ti]; vi ∈ [0, Vmax];  

|vi − vi−1|

di 
< a (a: restriction of the rate of step rise)   

 

vi; represents a discrete random variable to 
determine each gust magnitude. 

 

 
Fig. 3: Simulation showing wind velocity before and after 

wind gust 

 
Also, the point at which wind blows as a wind 

direction be the azimuth (Ψw), measured from the 
north through east. Wind direction changes at each 
wind velocity step is given by: 

 
Ψw(i+1) = Ψw(i) + ΔΨw(i)  

 
where  ∆Ψw is the random value of wind direction 

change. Since the wind velocity changes with 
altitude, the average wind velocity is determined by: 

 
Vcz = Voz(z/zo)

p  

 
where, 
Vcz; wind velocity at the altitude of z. 
V0z; specified wind velocity at the altitude of zo. 
p; energetic wind profile index. 
The wind force is given by: 

 
Fw = SeAVcz

2   

 
where,  
Se is the effective area influenced by the wind and A 
is a conversion factor to Nm2. 

With reference to the influence force, we 
decompose into the following components for more 
appropriate or easier application: 

 
Fwx = SeAVcz

2 cos(Ψw);      Fwy = SeAVcz
2 sin(Ψw)  

 
For simplicity, the quadrotor surface area is 

represented as a cylinder. So the surface area: 
 

Sk = μ2πrh + σ
2πr2  

The right hand representing the sum of lateral 
area and bases and μ, σ representing the fill factors 
here. Therefore, if wind affects only half of the 
quadrotor the effective area will be given by: 

 
Sex = μπrhcos(θ) + σπr

2sin(θ)    

Sey = μπrhcos(φ) + σπr
2sin(φ)  

 
with θ and φ representing the pitch and yaw angles. 

4. Controller design 

4.1. Problem formulation 

A quick preview of the modeling of this tiltable 
UAV reveals that the system presented has more 
inputs than degrees of freedom; that is to say, it is 
overactuated. Taking that into account, it might be 
desirable to find six control inputs -forces and 
moments- that reflect a direct effect on the six 
degrees of freedom. The choice that’s most related to 
the degrees of freedom is the set of forces and 
moments along the three axes. Let Fv = [Fx   Fy   Fz]T 

and Mv = [Mx   My   Mz]T  be the control inputs which 
are related to the actual 12 inputs through the 
following static equations: 
 

[

Fx
Fy
Fz

] = ∑ Fi
4
i=1                    (11) 

[

Mx

My

Mz

] = ∑ Mi
4
i=1                                                                             (12) 

 

Note that the 6 control inputs [Fx  Fy  Fz  Mx  My  Mz] 
are composed of nonlinear combination of 12 actual 
inputs [ωi  αi  βi],i = 1,...,4. This means that for each set 
of control inputs, the system has many combinations 
of actual inputs. The way to find the best 
combination is discussed in the next section. 

For convenience, the equations of forces and 
moments (6) and (7) will be treated as two 
subsystems in terms of the new control inputs for 
the rest of our analysis where Eq. 13 represents 
subsystem 

Σ1 and Eq. 14 represents subsystem Σ2 where 
 

∑ :1   m [
ẍ
ÿ
z̈
] = [

0
0
−mg

] − [

K1ẋ
K2ẏ
K3ż

] + RB
E [

Fx
Fy
Fz

]                (13) 

∑ :2   I [
ṗ
q̇
ṙ

] = −([
p
q
r
] × I [

p
q
r
]) − MG + [

Mx

My

Mz

]                (14) 

 
To construct the formulation of feedback 

linearization for tracking problem for Σ1, let eη be the 
error in the position 

 
eη = ηd − η  

 
where η is the position vector, ηd is the desired 
position vector. Dividing by m and subtracting ηd 

from both sides of Eq. 13 

0 5 10 15 20 25 30
0
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η̈ − η̈d = gz − (K/m)η̇ + (RB
E/m)F − η̈d  

 
then 

 
ëη = {−gz + (K/m)η̇ − (RB

E/m)F + η̈d}             (15) 

 
The control input for this subsystem is F. To 

introduce feedback linearization for this part of the 
system through the control input, denoted by Fv, let 

 

Fv = m(RB
E)

−1
{−gz + (K/m)η̇ + η̈d + KvFėη + KpFeη} (16) 

 
A similar procedure is carried out for Σ2. Let  

 

Mv = (Ω × IΩ) − IΩ
⋅

+MG + IKvMeΩ + IKpM ∫eΩdt       (17) 

 
where the constants KvF, KpF, KvM  and KpM  are to be 
determined. The closed loop configuration is shown 
in Fig. 4. 

 

System

Model

Optimization

GA , IP

Feedback

Linearization
PID

Desired Path
States

+
-

+

-

Fig. 4: The control design architecture 

4.2. Feedback linearization and stability analysis 

In this subsection, the stability of the system is 
studied and stated by the following two theorems. 

 
Theorem 1: Subsystems Σ1 and Σ2 are asymptotically 
stable under control inputs (16) and (17) 
respectively if the following two conditions are 
satisfied 
 
 KpF = KpM = I 
 KvF and KvM are positive definite matrices 

 
Proof: For Σ1, choose the Lyapunov function 
 

V(eη) = 1/2(eη
Teη + ėη

Tėη) ≥ 0                 (18) 

 
then  

 
V̇(eη) = eη

Tėη + ėη
Tëη = ėη

Teη + ėη
Tëη = ėη

T(eη + ëη)

          = ėη
T{eη − gz + (K/m)η̇ − (RB

E/m)F + η̈d}
       (19) 

 
A necessary and sufficient condition for the error 

eη to be locally stable is that V̇(eη) ≤  0. To check this 

condition, the linearization controller is introduced 
through the input Fv as follows 
 

Fv = m(RB
E)

−1
{−gz + (K/m)η̇ + η̈d + KvFėη + eη}         (20) 

 

Substituting Fv into F in Eq. 19 yields 
 
V̇(eη) = −KvFėη

Tėη ≤ 0                  (21) 

 

Comparing the expression of Fv in Eq. 20 with Fv 

in Eq. 16 yields KpF = I while KvF is required to be a 
positive definite matrix. 

For Σ2, choose the Lyapunov function 
 

V(Ω) =
1

2
(∫ eΩ

T ∫ eΩ + eΩ
TeΩ) ≥ 0                 (22) 

 

Then 
 

V̇(eΩ) = eΩ
T ∫ eΩ + eΩ

T ėΩ = eΩ
T(∫ eΩ + ėΩ)

 = eΩ
T(∫ eΩ + (I

−1Ω × Ω) + I−1MG − I
−1M+ Ω̇d)

            (23) 

 

Similarly, to check the stability condition, the 
feedback linearization controller is introduced 
through the input 
 
Mν = (Ω × IΩ) + IΩ̇d +MG + IKνMeΩ + I ∫ eΩ                  (24) 

 
Substituting Mv into M in Eq. 23 
 
V̇(eΩ) = −KvMeΩ

TeΩ ≤ 0                  (25) 
 

Similarly again, comparing the expression of Mv in 
Eq. 24 with Mv in Eq. 17 yields KpM = I while KvM is 
required to be a positive definite matrix.   

 
Theorem 2: Assume the drag constant K is not 
known exactly and is estimated with K̂, subsystem Σ1 

is asymptotically stable if the following conditions 
are satisfied 

 
 KpF = KpM = I 
 KvF and KvM are positive definite matrices 
 Drag constant K is replaced with K̂, where 

 K̇̂ = diag {
ė(1)η̇(1)

m

ė(2)η̇(2)

m

ė(3)η̇(3)

m
} 

 

Proof: The drag constant appears only in subsystem 
1. Choose the Lyapunov function 
 

V(eη, K̃) = 1/2(eη
Teη + ėη

Tėη) + 1/2s
TK̃TK̃s ≥ 0              (26) 

 

where 
 

s = [1 1 1]T  

 

and 
 

K̃ = K̂ − K.  
 

then 
 

2sTK̃TK̃s

V̇(eη, K̃) = eη
Tėη + ėη

Tëη + s
TK̃TK̇̃s

    = ėη
Teη + ėη

Tëη + s
TK̃TK̇̃s = ėη

T(eη + ëη) + s
TK̃TK̇̃s  

 = ėη
T[eη − gz + (K/m)η̇ − (RB

E/m)F + η̈d] + s
TK̃TK̇̃s

                    (27) 
 

But K̇̃ = K̇̂ − K̇˙ and since K is constant, this yields 

K̇̃ = K̇̂ˆ˙ Then V̇(eη, K̃) becomes 
 

V̇(eη, K̃) =   ėη
T[eη − gz + (K/m)η̇ − (RB

E/m)F + η̈d]

+sTK̃TK̇̂s
      (28) 

 

Introducing the feedback linearization controller 
through the input 
 

F = m(RB
E)
−1
(−gz + (K̂/m)η˙ + η̈d + KνFe˙η + eη)    (29) 
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Substituting in V̇(eη, K̃) and after some 

manipulations 
 
˙V̇(eη, K̃) =   −KυF(ėη

Tėη) − ėη
T(K̃/m)η̇ + sTK̃TK̇̂s               (30) 

 

Note that K̃  and K̇̂˙ are 3x3 diagonal matrices 
while e˙ and η˙ are 3x1 matrices. 

To analyze the second and the third terms of Eq. 
30 further, the matrices are broken down to their 
basic elements 
 

−ėη
T K̃

m
η̇ + sTK̃TK̇̃ =

−
1

m
[ė(1)K̃(1,1)η̇(1) + ė(2)K̃(2,2)η̇(2) + ė(3)K̃(3,3)η̇(3)]

+ [K̃(1,1)K̇̂(1,1) + K̃(2,2)K̇̂(2,2) + K̃(3,3)K̇̂(3,3)]

= K̃(1,1) [K̇̂(1,1) −
ė(1)η̇(1)

m
] + K̃(2,2) [K̇̂(2,2) −

ė(2)η̇(2)

m
]

+K̃(3,3) [K̇̂(3,3) −
ė(3)η̇(3)

m
]

         (31) 

 

since K̇̂ is defined as K̇̂ =

diag {
ė(1)η̇(1)

m

ė(2)η̇(2)

m

ė(3)η̇(3)

m
}. Then 

 
V̇ = −KυF(ėη

Tėη) ≤ 0                  (32) 

5. Optimization 

We mean by Optimization here is the process of 
selecting the best (optimum) element -or set of 
elements- from a set of available alternatives 
according to some preset criteria. In the situation 
presented here, it is a question of finding the best -
according to some cost function- combination of 
inputs that satisfy the control equations. 

As mentioned in the previous section, the forces F 
and moments M are used as inputs to the system to 
avoid dealing with the nonlinearity present in the 
actual inputs ωi, αi and βi Feedback linearization 
control is also achieved through F and M which 
means that the controller chooses values of F and M 
to be fed as inputs to the system. It has been also 
shown in Elfeky et al. (2013) that with only two 
opposite rotors running, there’s always a 
combination of ωi, αi and βi that satisfy any arbitrary 
values of F and M. This means that with full 
actuation, there are many combinations of ωi, αi and 
βi that satisfy any arbitrary values of F and M. The 
question addressed in this section is how to choose 
one combination of ωi, αi and βi from the set of many 
combinations. 

Several optimization techniques are available in 
the literature. However, few of them deal with 
nonlinear problem with constraints. Two 
optimization techniques are tested and compared as 
a proof of concept and to complete the controller 
design discussed in the previous section. Those 
techniques are Genetic algorithm and Interior-point 
algorithm. This part specifically has high potential 
for improvement in both theory and implementation. 
It must be clear that this is not a typical optimal 
control problem where the objective is to find 
optimal gains for the controller, instead, the 

controller gains are already determined and the 
purpose of optimization is to map the forces and 
moments used in the controller to the actual 12 
inputs of the system through the static equations 
relating them. 

Interior point (IP) is an optimization class of 
algorithms that can solve linear and nonlinear 
convex optimization problems. The algorithm 
reaches an optimal solution by traversing the 
interior of the feasible region rather than the surface 
of the region. Convex optimization and particularly 
interior point are covered in Nesterov and 
Nemirovskii (1994) and Renegar (2001). 

Genetic Algorithm (GA) belongs to a class of 
algorithms called Evolutionary Algorithms (EA). EA 
generates solutions using nature-inspired 
techniques such as inheritance, mutation, selection, 
and crossover. GA is covered in details in Goldberg 
(1989), Homaifar et al. (1994), Fonseca and Fleming 
(1995), and Michalewicz et al. (1992). 

5.1. The optimization problem formulation 

It’s first desired to find a cost function for the 
optimization problem, which means finding some 
criteria to choose among the many sets of inputs. 
The most typical and critical objective in UAV 
application is the minimization of energy 
consumption during the flight. The cost function can 
be written as follow: 
 

J(ω, α, β) = ∑ {ω1 ∑ ωi
3 + ω2 ∑ (Δαi)

2 +4
i=1

4
i=1

n
i=1

 ω2∑ (Δβi)
24

i=1 }                    (33) 

 
where the first term is the power consumption by 
the rotors. The cubic exponent comes from the 
assumption that the torque is proportional to the 
square of the angular velocity, while the power is the 
torque time the angular velocity. The second and the 
third terms penalize tilting movements (cost of 
energy) and n is the number of samples over which 
the optimization is performed. 

The optimization problem can then be written as 
follows 

 
min     J(ω, α, β)  

 
Subject to 

 

[

Fx(j)
Fy(j)
Fz(j)

] = ∑ [

0 0 cβ(i,j)sα(i,j)
0 0 sβ(i,j)sα(i,j)
0 0 cα(i,j)

]4
i=1 [

0
0
bω(i,j)

2
] , j = 1,… ,4  

[

Mx(j)

My(j)

Mz(j)

] = ∑ [

0 0 cβ(i,j)sα(i,j)
0 0 sβ(i,j)sα(i,j)
0 0 cα(i,j)

]4
i=1 [

0
0
dω(i,j)

2 δ(i)
] + ri × Fi

                     0 ≤ ωi ≤ 10000

                      |βi| ≤ π/2 

                      |αi| ≤ π/6

  

                    (34) 

 
Two algorithms are tested to perform the 

optimization problem, Genetic Algorithm and 
interior-point algorithm. These are implemented 
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using MATLAB functions ga and fmincon. Two 
algorithms were developed for each method, an 
offline and recursive algorithms. The objective of the 
recursive algorithm is to minimize the time for 
optimization to converge by optimizing for one 
sample with 12 inputs only at a time instead of 
optimizing for the 12 inputs in the whole flight 
samples. In Genetic Algorithm, the recursive 
technique is developed by setting the final 
population in one time sample to be the initial 
population in the next time sample. While in interior 
point optimization, the recursive algorithm is 
developed by setting the final solution at one time 
sample to be the initial set point in the next sample. 
Those techniques work only if the sampling time is 
small enough so that the there’s no big difference 
between two consecutive samples. 

6. Simulation results 

In this section, the study results will be reported. 
First the simulation, while considering no wind gust 
and disturbance is presented. After that the results 
with wind gust is stated. 

First, an initial comparison is carried out to 
choose which optimization algorithm would be more 
suitable. The criteria for comparison are 
convergence time and optimality in terms of cost 
function. However, the first priority here is time for 
practical implementation purposes. The four 
algorithms are tested for 1, 2 and 3 samples of a 
flight simulation. The results are listed in Table 1 
which includes the convergence time and the 
optimal value of the objective function. 

 

Table 1: Convergence time and objective function 
comparison 

Samples  GA RGA IP RIP 

1 
conv. time 898.0 s 898.0 s 0.6 s 0.6 s 

J 1.20 1.20 0.27 0.27 

2 
conv. time 12947.9 s 5357.4 s 2.4 s 1.3 s 

J 59.80 1.55 0.55 2.43 

3 
conv. time 38979.0 s 10497.4 s 13.9 s 2.0 s 

J 44.94 2.16 0.82 2.70 
 

It’s evident from the results that Recursive 
Interior-Point (RIP) technique is more practical for 
our purpose. Although conventional IP technique is 
superior in optimality, which is expected, RIP takes  

Significantly, less time to converge which makes 
it the best candidate for online implementation? 
Further study is carried out on the developed RIP to 
investigate its behavior in terms of convergence 
time. Fig. 5 shows the convergence time against 
number of samples optimized. The curve is almost 
linear except near the first few samples as shown in 
Fig. 6. The slope of the linear part is equal to 0.270 
m/sample. This means that the algorithm takes 
around 270 ms to optimize one sample of 12 inputs. 
This result is not suitable for online implementation, 
therefore all flight simulations are implemented 
offline. However, this result is very promising for 
future research.  

To test the control algorithm, the quadrotor is 
commanded to elevate up to 10m, tilt forward with 

30 degrees and perform a circle while pointing to its 
center. To perform a circle, the quadrotor is 
commanded to follow sinusoidal paths along x and y 
axes. The flight is an example of a surveillance 
mission where the quadrotor might be taking 
panoramic photos of a certain target. This complex 
flight demonstrates the strength of both the design 
and control technique. 

 
Fig. 5: Convergence time for recursive interior-point 

algorithm 

 
Fig. 6: Convergence time for recursive interior-point 

algorithm for small time 
 

The optimization is done offline, i.e., and prior to 
the flight. The parameters of the system are assumed 
to be known. The control parameters are chosen, 
according to Theorem 1. KpF = KpM = I while KvF = KvM   

are taken to be equal to 3I, where I here is the 3x3 
identity matrix. Fig. 7 shows both the desired and 
actual positions of the quadrotor in x, y and z axes 
while Fig. 8 shows the first derivative of the position 
vector and the 3-D position is showed in Fig. 9. It’s 
evident from the figures that the path was followed 
with high accuracy. 

Fig. 7: x, y and z positions of the quadrotor 
 

The orientation vector of the quadrotor is shown 
in Fig. 10 in radians. It can be seen that the angle 
reached π/6 and the angle went from 0 to 2π to keep 
pointing towards the center of the circle while the 
quadrotor is completing a full circle. This means that 
Yaw angle is also performing a complete circle 
simultaneously. 

In Figs. 11 and 12, the input angles αi and 

βigenerated by optimization are shown. One 
objective of optimization was to limit the change in 
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each of the angles in order to minimize energy 
consumption. The figures show minimal variations 
in the angles. Figs. 13 and 14 show the resulting 
forces and moments.  

 

Fig. 8: Translational velocities x˙, y˙ and z˙  
 

Fig. 9: A 3D plot of the flight on x,y and z axes 
 

Fig. 10: Quadrotor orientations: Φ,Θ, and  Ψ 
 

 

Fig. 11:  Generated αi by optimization 
 

Finally, the simulation is done with wind gust and 
disturbances. Fig. 15 shows the elevation position of 
the command to take off vertically and then thrust 
further in x direction to a height of [10, 0, 50] m. In 
Fig. 16, the 3D plots are shown. Here, the controller 
is able to track the coordinate under wind 
disturbance with a negligible error due to wind. Fig. 
17 which depicts the coordinates of the quadrotor 
moving in the x direction with a slight error in the y 
position as shown due to wind gust disturbance. Fig. 
18 shows some fluctuation in the velocities due to 
effect of wind disturbance. Fig. 19 and Fig. 20 shows 
the angles and the angular velocities are unaffected 
under wind disturbance. This shows the capability of 
the quadrotor itself to move towards a certain 

direction without compromising the attitude under 
wind disturbance. 

 

Fig. 12: βiGenerated by optimization 
 

Fig. 13: Desired forces generated by the controller 
 

Fig. 14: Desired moments generated by the controller 
 

 
Fig. 15: Position of elevation and thrust further to a [10, 0, 

50] m location under wind gust 

7. Conclusion 

Feedback linearization proved to stabilize and 
control the attitude of the quadrotor with tilting 
rotors. All the degrees of freedom can be controlled 
freely and independently. This allows for more 
complex and precise maneuvers that weren’t 
possible with conventional quadrotor. In summary, 
this control algorithm highlights the advantages of 
the novel design by taking advantage of the high 
mechanical flexibility available. In fact, the controller 
decouples the model of the quadrotor into two 
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completely separate systems, systems of forces and 
positions, and a system of moments and orientations. 
The two systems can be studied and controlled 
absolutely independently. The only connection 
between the two systems appears in the final stage 
of optimization where the six equations are solved 
together to find the 12 inputs. The optimization part 
is developed to choose the best inputs according to 
energy consumption which is very critical in all UAV 
applications. 

 

 
Fig. 16: 3D plot of Quadrotor position for elevation and 

thrust further to a [10, 0, 50] m location under wind gust 

 
Fig. 17: x, y and z position for elevation and thrust further 

to a [10, 0, 50] m location under wind gust 
 

 
Fig. 18: Velocities for elevation and thrust further to a [10, 

0, 50] m location under wind gust 

 
Fig. 19: Orientation angles for elevation and thrust further 

to a [10, 0, 50] m location under wind gust 
 

 
Fig. 20: Angular velocities for elevation and thrust further 

to a [10, 0, 50] m location under wind gust 
 

A nested PD control loop is adopted to control the 
quadrotor position and cancel disturbances with 
additional inputs due to the quadrotor structure. The 
wind model is derived from an approach which takes 
into account the wind velocity change, the wind gust 
step change, the variation of wind velocity with 
increase in height and the changes in wind direction. 

Finally, we can say that the control and 
optimization part show very promising results. The 
results demonstrate that the quadrotor with tilted 
rotor can effectively attain the desired trajectory in 
the presence of wind disturbance.  However, there is 
still a substantial space for improvements. Future 
research may include a wide variety of angles and 
considering different scenarios of uncertainty in the 
parameters, states and disturbance. The 
optimization part as well can be further improved to 
consider different techniques and online 
implementation of optimization.  

Other control techniques can also be developed 
for this system. Particularly, model predictive 
control MPC is a candidate due to the fact that it 
combines control and optimization under 
constraints. 
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